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Approximation by Complex Modified Szasz-Mirakjan-Stancu
Operators in Compact Disks

Nursel CETIN?

?Department of Mathematics, Ankara University, 06100, Tandogan, Ankara, Turkey

Abstract. In this paper, we establish some theorems on approximation and Voronovskaja type results
for complex modified Szdsz-Mirakjan-Stancu operators attached to analytic functions having exponential
growth on compact disks. Also, we estimate the rate of convergence and the exact order of approximation.

1. Introduction

For a real function of real variable f : [0, 00) — R, Szdsz-Mirakjan operators are defined as

Su(f;x)=e™ 3 Mf(l) , x€[0,00),

= j! n

where the convergence of S,(f;x) to f(x) under the exponential growth condition on f that is | f (x)| < Ceb?,
for all x € [0, o0) , with C, B > 0 was proved in [2].

Concerning the convergence of complex Szdsz-Mirakjan operators in the complex plane, the first result
was established by ].J. Gergen, EG. Dressel and W.H. Purcell [9]. Note that in the above mentioned paper,
no quantitative estimate of this convergence result was obtained. Then, S. G. Gal [4] obtained quantitative
estimates for the convergence and Voronovskaja’'s theorem of complex Szdsz-Mirakjan operators attached to
analytic functions satisfying a suitable exponential-type growth condition. In [5], for the analytic functions
without exponential-type growth conditions, S. G. Gal gave Voronovskaja type result with quantitative
estimate and the exact order in approximation for these operators. We may also mention that similar results
for the well-known complex approximating operators were obtained by S. G. Gal in his book [3].

Very recently, N. Cetin and N. Ispir [1] introduced the complex modified Szdsz-Mirakjan operators,
which are defined by

an > j .b
Sn(f; An, bn;z) =e h” Mf(]_n

— ) zeC;nelN @)
j=0 ]!bn n

where {a,}, {b,} are given sequences of strictly positive numbers such that lim % = 0 and ﬁ% < 1.In[1],
n—oo 4n n

the authors obtained Voronovskaja type results and estimated the exact orders of approximation and also
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proved that the complex modified Szdsz-Mirakjan operators preserve the geometric properties in unit
disk. Recently, many researchers have studied intensively Stancu-type generalization of several complex
operators (see [6-8, 10, 11]). Inspired by such type operators we would like to study the Stancu-type
generalization of the operators (1).

In the present paper, we introduce the complex modified Szész-Mirakjan-Stancu operators as follows:

o (a,2) (<j+a)bn

55,0('5) $, by z) = i 4

)zeC;ne]N )

where {a,}, {b,} are given sequences of strictly positive numbers such that lim & 2 =0and b <1and a, B are

n—oo M

two given real parameters satisfying the condition 0 < a < . Also, Dr = {z€ C:|z| < R, 1 < R < o0}, the
function f : [R, c0) U Dy — C is continuous in [R, o) U Dg, analytic in D and f has a suitable exponential
growth condition in defined domain. We note that for a« = § = 0, these operators become the complex
modified Szasz-Mirakjan operators defined by (1).

In this study, we investigate approximation properties of the complex modified Szdsz-Mirakjan-Stancu
operators attached to analytic functions having suitable exponential growth on compact disks. Then, we
obtain Voronovskaja type results and estimate the exact orders in approximation by complex modified
Széasz-Mirakjan-Stancu operators and their derivatives.

2. Auxiliary Results

Now, we will give the following auxiliary results which include some properties of the operators defined
by (1) and (2).

Lemma 2.1. Foralln € N,k e NU{0},0 < a < fand z € C, we have

@B, .o p .y nZ ((mﬂ) - ) AnZ + aby (af) o
Sn (ek+1/anlbnlz) - an+ﬁbn Sn (ek/anrbnlz) + n +’Bb S (ek/anrbn/z) (3)

where ey (z) = Z~.

Proof. From the formula (2), we can write

S@p) 2N (@) ((]’ +a)b, )"_

e; an, bn; 2 :
(ex ) = L), \an+ B

Differentiating with respect to z # 0, by direct computation, we get

(Sﬁa'ﬁ) (ex; an, bu; Z))/

o @2) (G ™ j@2) " an (G + )b\
Z |b] a, + ﬁb Z lb] ( an + ﬁbn )

j=0 ]

a, b fln n / b an n ] b
= D5 50, b2 + 2y ) (‘(]m) ) e ((]W) )
by, buz = ]!bL a, + pby = ]ubf a, + pby,

a a, a, + bn a, a (a,
= —b—”S,(q ﬁ)(ek;anrbn}z) + b—fs,(q ﬁ)(€k+1)ﬂn,bn;2) - ;5,(4 ﬁ)(ek;an,bn;z)
Qa, bl’l Q,
= S 8 5D b 2) + LD 010, b 2),

byz b,z

which implies the recurrence relation in the statement. [J
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Lemma 2.2. Let o, be satisfying 0 < a < B. Denoting e, (z) = z and Sﬁ,o’o)(ev;an, byn) by Su(ey; an, by), for all

n,k € IN U {0}, we have the following recursive relation for the images of the monomials e, under S,(qa’ﬁ ) in terms of
Sn(ev; An, bn), v = 0, 1, k,

k k—v
(aB), . . o ( )ﬂ (aby)
Sn (e ,ﬂn, bn,Z) - S (ev/arl/ bnl Z)
‘ X (an + )

Proof. This formula can be easily proved by mathematical induction. It is clear that this formula is true for
k = 0. Now supposing that it is true for k = r, it implies

o r v b )r—u
51(1 ,ﬁ)(er/' A, by;z) = (r)mnrsn(ev} A, by; 2).
;}4 v/ (a, + Bby)

Using (3), we obtain

a, al (ab,)"™" ,
51(1 ﬁ)(er+1;anz bn;z) = i+ ‘Bb Z ( )({Il+—ﬁb)r (Sn(ev; An, bn;z))
anz + ab,

n +ﬁb Z( )(an+ﬁb ) S (ev;an,bn,'z)

r v+1 b r=v
Z (r)M {% (Su(Cv; @n, b3 2)) + (z + O;—b”) Su(ev; an, bn;z)}.
n

= \V/ (an +ﬁbn)r+1 n

By applying the recurrence formula for the complex modified Szasz-Mirakjan operators obtained in [1],
proof of Theorem 3, namely

Sulevs1;n, byu; 2) = Zai(S (ev; An, by; 2)) + 2Sn(ey; an, by; 2),

it follows that

(a'ﬁ) . b, —rrw . b.: aby . b,
Sn (er+1/a1’l/ nrz) _vzzo ) (a”+ﬁbn)r+1 Sn(ev+1ranr H/Z)+ a Sn(evran/ n/Z)

r+1 r—v+1 r r—v+1
v bn v bn
= Z( ! )Msn(ev/‘anz bn;z) + Z(r)wsn(ev;am bn;z)

v W 1 (an + ﬁbn)rJr1 =0 \U/ (an + ﬁbn)wrl

1 r—v+1
v (ab
= Z (r ) 1)an(a—n)+15n(ev;an’ by; Z)'
v (a,,, + ﬁbn)r

v=0

This completes the proof of lemma. O

Lemma 2.3. If we denote Sy, (ex; an, by; z) = Sﬁ,o’o)(ek; ay, by; 2), where ey (z) = 25, then forall |z| < rwithr > 1,n € N
and k € IN U {0}, we have

|Sn(3k; An, bn/ Z)l S k'?’k
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Proof. We use the following recurrence formula obtained in the proof of Theorem 3 (i) in [1]
zb ,
Sn(ek+1; A, by; Z) = tl_” (Sn(ek; Ay, by; Z)) + ZSn(ek; Ay, by; Z)
n

forallz € C,k e N U {0}, n € IN. Clearly, since S,(eo; 2, bn; z) = 1, we get
ISn(er; an, bu;2)| < 1

for all |z| < 7. Then, for k = 1 we obtain

by ,
1Su(e2s @, bu; 2)| < — |(Suler; an, bu; 2)'| + 71Su(ers an, b 2)1.

Taking into account that from Lemma 2 in [1], S,(ex; a4y, by; 2) is a polynomial of degree k, by the well-known
Bernstein’s inequality we get

|(Su(exs an, bu; 2))’

k
<~ max{|Sulex; an, bu; )|+ || < 1}

Therefore, by the last inequality, we have

by
o 1Sn(e1; @n, bu; 2)Il, + 71Sn(er; an, by; 2)|

< r|ir+—J|.
n

By writing for k = 2,3, ..., step by step we easily obtain

IN

|Sn(32/' An, bn;z)|

A

k
.\ Du
|Sn(3k/anr bn/ Z)l S H |:r + (] - 1) a:|
d b
< 7 [1+(j—1)a—”] < k!
j=1 !

forall|z]<r,ke NU{0},neN. O

3. Approximation by Complex Modified Szasz-Mirakjan-Stancu Operators

Upper estimates for S,(ia'ﬁ )( f;au,by; z) can be expressed by the following theorem.

Theorem 3.1. Let D = {z€ C:|z| < R} be with 1 < R < +oo and suppose that f : [R,+oc0) U Dr — C is

continuous in [R, +00) U Dy and analytic in Dg, i.e. f(z) = ), ckzk,for all z € Dg, and that there exist M,C,B > 0
k=0

and A € (%, 1), with the property |cx| < M’;—f,for allk =0,1,2, ..., (which implies 'f(z)| < Me*¥ forall z € Dy ) and

|f()| < CeP, for all x € [R, +o0).

i) Let 0 < < Band 1 < r < % be arbitrary fixed. For all |z| < r and n € N, we have

n [an (1+B) + ﬁbnlc
a, (ay + Bby)

r,A 7

« b
S (Fra,byi2) — f(z)' <
where

Cou = MZ (k +1) (rA) < co.
k=1
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ii)Let 0 <a <Band1 <r<r <% Then,foralllz| <r and n,p € N, we have

‘ (Sga,ﬁ)(f; un,bn;z))(v) _ f(p)(z)‘ L ulon A +p) +Bbu] Criapln

an (an + Bbn) (r — T)p+1 '

where C,, 4 is given as at the above point (i).

Proof. i) Reasoning exactly as in the case of complex modified Szdsz-Mirakjan operators in the proof of
Theorem 3 (i) in [1], we can write

Sﬁa'ﬁ) (f;an,bp;2) = Z CkSSla'ﬁ)(ffk; ay, by; 2)

k=0

for all z € Dg, which immediately implies

(o)
<) lad
k=1

S fa,b,39) - £ 2) 51 esin, b2 e )

since S,(f"g)(eo; ay,by;z) = 1for all z € C. By using Lemma 2.2, we obtain

v=0 v (al’l +.Bb”) (aﬂ )

k-1 v k—v k-1 k-v
S,(f'ﬁ)(ek;un,bn;z) —e(2) = Z(k)wn)k [Sn(ev; an, by; 2) — ey (2)] + Z( )a (@bn) —ey (2)
=0
k k
- ] €k (Z) ’

a, a
- 7 S rbn, bnr
(a”ﬁ R - [Sulex;a z) — e (Z)]+((11n sy

which by passing to the norm ||.||, implies

k=1

k-1 k—v
@8y ( ) o ( )a (ab,)
Sn 7 n/bn Sn vrs n/bn vlily
(ex; tn, by) Z‘a (Wﬁb k|| @b e+ D[
T S(ean b 1 LI
(an +ﬁ n) ” (ek/an/ ) ek“r +( (an +ﬁbn)k]

for all |z| < r. Using the inequalities

(k+1)! b sy
2

n

[15n(ex; an, bn) — exll, <

obtained in the proof of Theorem 3 (i) in [1] and

k k
~]xi< Z(l—xj), 0<x;<1, j=1,2,..k
j=1 =1
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we get
k

) a, +ab k a
N ' B n n _ n k
S\ ek a, by) — e " (an+ﬁbn) (an+ﬁbn)"]r

_ [+ aby k(k+1)!b_,,rk_1
, a, + Bby 2 a,

R (1 _ L)ﬁ
(an +ﬂbn)k

b 1 p
< (k+ 1)1 L1 +2rk(1_ —"k]
o (an +‘an)
< bula (L4 B) + ]
n ((1,, + ﬁbn)

(k + D).
This immediately implies

S (Fra,,b,i2) - £ ) S\ et b1i2) = @)

o
<) lad
k=1

Ak by [a, (1 + B) + Bbu]
= Z ME a, (ay + Bby)

(k+ D

=1

nlan L+ B) + bl k
= MY (k+1)@FrA)

ay (a, + Bby)

_ by [a, (1 +B) + Bby]
h ay (a, + Bby)

r,A 7
where

Cou = MZ (k +1) (rA) < 0o
k=1

foralll <r< %. We note that f(z) = Y, zF*! and its derivative f'(z) = . (k+ 1) z* are absolutely and
- k=1

=1
uniformly convergent in any compact disk included in the open unit disk.
if) Denoting by y the circle of radius r1 > r and center 0, for any |z| < rand v € y, wehave [v —z| > 11 — 7.
By the Cauchy’s formula, for all |z] < r and n € IN, it follows

@) fn boopy—
(Sl(qa,ﬁ)(f; a, bn;z))(p) B f(p) (Z)‘ _ % fsn (f/ Ay, bn, U) f(U) dv

. (U _ Z)p+1
- by [a, (1 + B) + Bb,] p'ry
ay (a, + Bby) A =

which proves (ii) and the theorem. [J

Now, we give Voronovskaja-type result in compact disks for Ss,a'ﬁ)( 580, by; 2).

Theorem 3.2. Suppose that the hypotheses on the function f and on the constants R, M, C, B, A in the statement
of Theorem 3.1 hold. Also, let 0 < o < Band 1 < r < %. Then, for all n € N and |z| < r, we have the following



Nursel CETIN / Filomat 29:5 (2015), 1007-1019 1013

Voronovskaja-type result

(@~ p2) bn

S;(qﬂrﬁ)(f;an,bn;z)— fz) - o o, Sl Al P nnzf,,(z)

2

b, 2 b2 o ﬁ) b2 (a 8)
() M)+ e (0 g ),

where

M, (f) = 3Mr‘;‘ Y (k+ 104 < oo
k=2
MO () = M(a® + ap +262) Y Kk - 1) (An < o0
k=0

MS,Z’[;) (f) = MA(a+p) Z k(k +1) (Ar)<! < oo
k=0

Proof. For all z € Dg, we consider
@, (0( - Z) b, , b, .,
S fitn i) = £ - S @) - )

— . o) _ b_n 7" (“rﬁ) . N . N ((X - ﬁZ) bn ,
- S"(f’ n, bnl Z) f(Z) Zﬂn Zf (Z) + Sn (f/ An, bn, Z) Sﬂ(f/ ay, bn,Z) —an n ‘an f (Z)

Taking f (z) = Y. cz¥, we immediately obtain

a, - bn , bn .
émm%ﬁﬂ*ﬂ”‘%f%rfw—gff@
ZC ( ek,an,bn,z) z — b—k(k 1)Zk 1)

k=0

o0 ) by
+ Z Cx (55 15 a0, b1;2) — Suleisan, buiz) — < +ﬁ27 )
k=0 "

By Theorem 4 in [1], for all |z|] < » we have

b 2
Su(f: i byi2) — £2) — w%|(ijm

where

M, (f) = 31\/1;1 &l Z (k+1) (rAF ! < .
k=2
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Next, to estimate the second sum, using Lemma 2.2, we rewrite as follows.

S8 04300, b132) = Sulers an, b 2) - g +ﬁ[2b
e av (ab,)*™ g (2 - ‘BZ)b
= —S vrAn, b?’l! - 1 -— Sn / n/bn;
Z(h”&f(e” ”[ wﬁ&ﬁ]@w e
k=2 k—v k—
= MS (ev/' An, bn;z) + ms"(ek_l;am bn Z)
o) ay + oy (@ + )"
bn k—v b
ST o
v=0 n n fn
k=2 v kv k-1
= (k)wn)ksn(&); ay, bn;z) + kaa”—bk [S (ek 17 an, b”' Z) - Zk_ ]
o v (ﬁn +‘3bn) (an +[3 n)
kﬂ k 1b

k=2 av k—v
— (k) (ﬁb ) S (ek; An, bn/ Z) [ (gk,' ay, bn, Z) _ Zk]

v/ (an + b n) (an + By )

V=l

g Kb af ) R e )
an + by (@n + Bb,)" an + by (@y + Bb,)"

Also, using Lemma 2.3 and the following inequalities

£ kpb,
. (an+ﬁb) Z( ﬂn+ﬁb):an+ﬁbn'

j=1

(k+1)!b, 1 (see in the proof of Theorem 3 in [1]),

|Sn(ek; Ay, by; Z) — (Z)| < —
2 ay

k=2 k—v
b,
ﬂ”“)smwm@

k-2 kv
Z ( )& |S (eUI An, bn;Z)|
=0 )

v=0 v ({Iln + ﬁb ( an + ﬁb

v kk-1)  (k=2\al@b)

Tk (k-v- 1)( )(an + by Suleuitn bui2)
kk=1) (aby,)? s (k - 2) ay (ab,) ™2

< k- 2)! TR LA

=72 (a, + Bb,) (=2 Z::; (ay + by) 2

SHFD(MV

2 (ay+ Bby) (=200,
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we obtain
Q, b
SSI /ﬁ)(ek; Ay, bn/' Z) - Sn(ek; Ap, bn; Z) (in _f;?j
k-2 b k—v k k_lbn
< Z( )?a (i ﬁ; 1Suu(ev; A, b3 2)] + (aai”m |Su(ex—1; an, b z) — 27
k-2 k—v k-1
+ ( )( (ﬁbﬁi IS, (ex; an, by; )| + % |Su(exs an, b z) — 2|
=0 a, + poy, ay + pby
kab, | a7 kBbw i
1+ — - ———
"t + b (an + Bb,)" l "+ by g (@, + Bba)*"
k(k=1) (ab)* i kab;, k2
=72 (an + pbn)’ (== 20y (an +ﬁbn)k!r
L k=1 (Bb.) it kpb, e+ it 4 KEZ 1)0435% g, k- 1)(ﬁb3)2 y
2 (@b 20 (B @0+ ) (@0-+ Fb)
2
< fﬁb : [k(kz‘ Do w-2)+ @ﬁ% Fk(k—1)ap+k (k- 1);32}
b .
W#‘ [kak! + kB (k + 1)!]
b > [0 + ap + 282 k (k= D kir* + _h [a + Bk (k + 1)1+
" (an + b)Y 2 (@ ) o
Thus, we get
S by
> ck( S s 012 = Sutesan bi2) - LI 2, ke )
<Yl S usan 52) = Sz biz) - S LI ;ib
M(a? +af +26°) f o= ¢ MA@ +B)B
< e kz_;k(k— DA + 3= ) k:Ok(k+ 1) (rA) ™,

where for rA < 1 the series are convergent. This completes the proof. [

Now, we will obtain the exact orders in approximation by complex modified Szasz-Mirakjan-Stancu
operators and their derivatives.

Theorem 3.3. Suppose that the hypotheses on the function f and on the constants R, M, C, B, A in the statement of
Theorem 3.1 hold and let 1 < r < % be fixed. Then, for all n € N and |z| < r, we have

SSla,ﬁ)(f;anl n) — ~ Z_”, nEN

n

where the constants in the equivalence depend only on f, a, B and r, if f is not a polynomial of degree < 0O for
0 <a <B,if fisnotapolynomial of degree < 1 for a = B = 0 and if f is not of the form f(z) = Ce** with A # 28
for0=a<§p.
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Proof. For all |z] < ¥ and n € N, we have

S fian, biy2) - f()——{”” @zpa, f;z f@) @)
b, (ay a, B by ’ by 17
+E (Z—) [SS, ﬁ)(f;an,bn;z)—f(z)— %f (Z)——Zf (Z)]}

{((x pz) f'(2) + f"( D+ ( ) [S(aﬁ)(f n, bn;2) = f(2)

(a pz) by b pby

Ly 0= g @)= s g )

Using the following inequality
IE + Gl = [IIF[l = [IGIl = [[Fll = |Gl

and denoting e; (z) = z, we obtain
/) ! e 44
s (f:a,,b,) - (@=penf +2f

=
_(a—Ber)by " pby
a, + by f_ﬁlf _u(an+ﬁbn)

S (Fra, ) - f

bn (ﬂ_n)z
a, \b,

Taking into account the hypotheses on f , we can write ||(0z —per) f' + %
contrary, it follows that

14

, > 0. Indeed, assuming the

(a-p2) f (2) + gf” (z)=0

for all z € D,. Here, we have three different cases. If 0 < a < §, denoting y(z) = f'(z), searching v (z)
in the form y (z) = Y, &zF and replacing in the above differential equation, we easily obtain 6; = 0 for all
k=0

k =0,1,..., which implies that f (z) is a polynomial of degree < 0, a contradiction. If @ = = 0, then we
immediately get f” (z) = 0 for all |z| < 7, i.e. fisa polynomial of degree < 1, a contradiction. If 0 = a < f3,
the differential equation easily gives the solution f(z) = Ce*?, C € C arbitrary complex constant, which is a
contradiction.

Now, by Theorem 3.2, we immediately obtain

an 2 (a,ﬁ) . ((1 ﬁel)b b 1/ ﬁbrzi
ol R ey f‘zan _(—+ﬁb)
2 V| o (e ( )by
< (52 s eramn -5 - 0;,1 f;b f = e+ I 5e1)f|)

<M, (f) + M,
there exists an index n; (depending on f,a,f and r only) such that for all n > n;, we have
’ €1 oy bn an 2 Q)
J@=peor+ 2] -2 (3] Js¥ it £
2 r Ay bn

_(a_ﬁel)bnf,_b_ne "o _ ﬁb%l
ay + Bby 2a, ! a, (a, + Bby,)

]‘ ’ e 7’
2> |@=pe) f+ 517
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which implies

by
2

44

s (f:a,,

foralln > ny.For1 <n <ny -1, we get

S (F;a,,by) -

by
. 2 ZMr (f)

with M, (f) = & 88 (£, b,) -

> 0. Therefore, finally we obtain
r

S (£, a0, by)

by
. 2 acr (f)

for all n, with

)

which combined with Theorem 3.1 (i), we get the desired conclusion. [

Co(F) = min {Mys (), M1 (), 5 (= pen) £+ 27

Theorem 3.4. Suppose that the hypotheses on the function f and on the constants R, M, C, B, A in the statement of
Theorem 3.1 hold and let 1 < r < r; < % and p € N be fixed. Then, for all n € N and |z| < r, we have

b
~2 nelN
a

n

H (Sga/ﬁ)(f ; bn))(p) —

7

where the constants in the equivalence depend only on f,a, B, p,r1 and r, if f is not a polynomial of degree < p —1 for
0 <a < B, if fisnotapolynomial of degree < p for « = B = 0 and if f is not of the form f(z) = Ce*#* with A + 28
forO=a<§p.

Proof. Since the upper estimate is obtained in Theorem 3.1 (ii), it remains to prove the lower estimate.
Denoting by y the circle of radius r; and center 0 (where r; > r > 1), for all |z] < r and v € ), we have the
inequality [v —z| > r; — 7.

By the Cauchy’s formula, it follows that for all |z| < ¥ and n € N

(a.8) b
(57 059) - 10 0 = r [ i ot T,

(U )p+1

Y

Forallv € y and n € IN, we have

2
sﬁ“'ﬁ’<f,-a,,,bn;u>—f<v>=—Z{w po) f )+ 5" () + - [(b_) (847 Fian i) - )

(’Z”f;z)bf() f"()) = f <v>]}n

By using Cauchy’s formula, we get

) o) n o)
(5" Franbin)) - 10 @)= 2 {[(a -pf @+ 3@
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dv

F (s Franbuiv) - f) - SEE ) = 2o )
an 2mf

(l) _ Z)p+1

_ Pan
(a—pv) f* (V)
(a +Bby)
2mi f (v -2 v
)/

Now, passing to the norm ||.||,, for all n € IN it follows that
=
.

(st o) = f0) - EE ) = Zvf )
a,, 2mi f

(U _ Z)p+1

(Sf,a'ﬁ)(f; a, b”))(p) — f(P)

()H

(= pen) £+

dv

4

f = ) (a=pv) f' )
2mi

_ Z)P+1

dv

By Theorem 3.2, for all n € N we obtain

dv

P f(”:) ( aﬁ)(f n, bn; ) = f(v) = (Z;fggfnf'(v)—%vf"(v))

2mi (v -z’

v

ﬂ”n
o (@ntpbn) (a—pv) f’ (U)dv
27'(1 (v -2
Y r

|
< 5_7-( (rlz_n:;p+1 [Mrl (f) + M(a ﬁ) (f) + Mflazﬁ) (f)]

27'(1’1

27‘((

»)

Taking into account the hypotheses on f we have H[(a —Ber) f'+%f ”] > 0. The remain of the proof can

be easily shown by exactly the lines in [8] (see also [3]). Therefore, we omit the details. [
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